Thrown by tryMatch when an unhandled type is encountered.
A tagged union that can hold a single value from any of a specified set of types.
Placeholder used to refer to the enclosing SumType.
True if handler is a potential match for Ts, otherwise false.
True if T is a SumType or implicitly converts to one, otherwise false.
Calls a type-appropriate function with the value held in a SumType.
Attempts to call a type-appropriate function with the value held in a SumType, and throws on failure.
import std.math: isClose; struct Fahrenheit { double degrees; } struct Celsius { double degrees; } struct Kelvin { double degrees; } alias Temperature = SumType!(Fahrenheit, Celsius, Kelvin); // Construct from any of the member types. Temperature t1 = Fahrenheit(98.6); Temperature t2 = Celsius(100); Temperature t3 = Kelvin(273); // Use pattern matching to access the value. Fahrenheit toFahrenheit(Temperature t) { return Fahrenheit( t.match!( (Fahrenheit f) => f.degrees, (Celsius c) => c.degrees * 9.0/5 + 32, (Kelvin k) => k.degrees * 9.0/5 - 459.4 ) ); } assert(toFahrenheit(t1).degrees.isClose(98.6)); assert(toFahrenheit(t2).degrees.isClose(212)); assert(toFahrenheit(t3).degrees.isClose(32)); // Use ref to modify the value in place. void freeze(ref Temperature t) { t.match!( (ref Fahrenheit f) => f.degrees = 32, (ref Celsius c) => c.degrees = 0, (ref Kelvin k) => k.degrees = 273 ); } freeze(t1); assert(toFahrenheit(t1).degrees.isClose(32)); // Use a catch-all handler to give a default result. bool isFahrenheit(Temperature t) { return t.match!( (Fahrenheit f) => true, _ => false ); } assert(isFahrenheit(t1)); assert(!isFahrenheit(t2)); assert(!isFahrenheit(t3));
In the length and horiz functions below, the handlers for match do not specify the types of their arguments. Instead, matching is done based on how the argument is used in the body of the handler: any type with x and y properties will be matched by the rect handlers, and any type with r and theta properties will be matched by the polar handlers.
import std.math: isClose, cos, PI, sqrt; struct Rectangular { double x, y; } struct Polar { double r, theta; } alias Vector = SumType!(Rectangular, Polar); double length(Vector v) { return v.match!( rect => sqrt(rect.x^^2 + rect.y^^2), polar => polar.r ); } double horiz(Vector v) { return v.match!( rect => rect.x, polar => polar.r * cos(polar.theta) ); } Vector u = Rectangular(1, 1); Vector v = Polar(1, PI/4); assert(length(u).isClose(sqrt(2.0))); assert(length(v).isClose(1)); assert(horiz(u).isClose(1)); assert(horiz(v).isClose(sqrt(0.5)));
This example makes use of the special placeholder type This to define a recursive data type: an abstract syntax tree for representing simple arithmetic expressions.
1 import std.functional: partial; 2 import std.traits: EnumMembers; 3 import std.typecons: Tuple; 4 5 enum Op : string 6 { 7 Plus = "+", 8 Minus = "-", 9 Times = "*", 10 Div = "/" 11 } 12 13 // An expression is either 14 // - a number, 15 // - a variable, or 16 // - a binary operation combining two sub-expressions. 17 alias Expr = SumType!( 18 double, 19 string, 20 Tuple!(Op, "op", This*, "lhs", This*, "rhs") 21 ); 22 23 // Shorthand for Tuple!(Op, "op", Expr*, "lhs", Expr*, "rhs"), 24 // the Tuple type above with Expr substituted for This. 25 alias BinOp = Expr.Types[2]; 26 27 // Factory function for number expressions 28 Expr* num(double value) 29 { 30 return new Expr(value); 31 } 32 33 // Factory function for variable expressions 34 Expr* var(string name) 35 { 36 return new Expr(name); 37 } 38 39 // Factory function for binary operation expressions 40 Expr* binOp(Op op, Expr* lhs, Expr* rhs) 41 { 42 return new Expr(BinOp(op, lhs, rhs)); 43 } 44 45 // Convenience wrappers for creating BinOp expressions 46 alias sum = partial!(binOp, Op.Plus); 47 alias diff = partial!(binOp, Op.Minus); 48 alias prod = partial!(binOp, Op.Times); 49 alias quot = partial!(binOp, Op.Div); 50 51 // Evaluate expr, looking up variables in env 52 double eval(Expr expr, double[string] env) 53 { 54 return expr.match!( 55 (double num) => num, 56 (string var) => env[var], 57 (BinOp bop) { 58 double lhs = eval(*bop.lhs, env); 59 double rhs = eval(*bop.rhs, env); 60 final switch(bop.op) { 61 static foreach(op; EnumMembers!Op) { 62 case op: 63 return mixin("lhs" ~ op ~ "rhs"); 64 } 65 } 66 } 67 ); 68 } 69 70 // Return a "pretty-printed" representation of expr 71 string pprint(Expr expr) 72 { 73 import std.format; 74 75 return expr.match!( 76 (double num) => "%g".format(num), 77 (string var) => var, 78 (BinOp bop) => "(%s %s %s)".format( 79 pprint(*bop.lhs), 80 cast(string) bop.op, 81 pprint(*bop.rhs) 82 ) 83 ); 84 } 85 86 Expr* myExpr = sum(var("a"), prod(num(2), var("b"))); 87 double[string] myEnv = ["a":3, "b":4, "c":7]; 88 89 assert(eval(*myExpr, myEnv) == 11); 90 assert(pprint(*myExpr) == "(a + (2 * b))");
Boost License 1.0
SumType is a generic discriminated union implementation that uses design-by-introspection to generate safe and efficient code. Its features include: